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-mph, standard pressure at 15° C, the corre- -
sponding Reynolds number is 935,400; or for
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- sponding Reynolds number is 6, 865 000)

‘ Angle of attack
- Angle of downwash

Angle of attack, infinite aspect ratlo

Angle of attack, induced .
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INTERFERENCE METHOD FOR OBTAINING THE POTENTIAL FLOW PAST AN
ARBITRARY CASCADE OF AIRFOILS SR

By 8. Karzorr, RosertT 8. FINN, and JamEs C. LAURENCE

SUMMARY

A procedure is presented for obtaining the pressure distribu-
tion on an arbitrary airfoil section in cascade in a two-
dimensional, incompressible, and nonviscous flow. The method
considers directly the influence on a given airfoil of the rest of
the cascade and evaluates this interference by an iterative process,
which appeared to converge rapidly in the cases tried (about unit
solidity, stagger angles of 0° and 45°). Two variations of the
basic interference calculations are described. One, which is
accurate enough for most purposes, involves the substitution of
sources, sinks, and vortices for the interfering airfoils; the other,
which may be desirable for the final approximation, involves a
contour tntegration. The computations are simplified by the
use of a chart presented by Betz in a related paper. The numer-
ical labor involved, while considerable, is less than that required
by the present methods of conformal transformation. Illus-
trative examples are included.

INTRODUCTION

The rapid increase of interest in the design of fans and
turbines has led to many studies of the two-dimensional flow
past infinite lattices. Most of these studies involve approxi-
mate procedures (for example, references 1 to 3) or present
solutions for special classes of shapes (references 4 and 5).
Recently, attempts have been made to obtain exact solutions
by conformal transformation of the lattice to a circle. To
this end, Howell (reference 6) used a procedure that first
transformed the lattice to an isolated S-shape figure, which
could then be transformed to a near-circle by successive
Joukowski transformations and finally to a circle by the
method of reference 7. In reference 8 the cascade was
transformed first to a near-circle and then to a circle, also
with the use of several stages of conformal mapping. In
reference 9 the lattice was mapped into a lattice of straight
parallel lines by means of a function that was determined
with the aid of the transformation of this line lattice to a
circle. (See references 10 and 11.) These transformations
are of considerable interest, theoretically. The methods of
references 6 and 8 require lengthy computations, however,
and difficulty has been experienced in obtaining accurate
numerical results with the method of reference 9. All three
methods require modifications for highly cambered contours
or for lattices of high stagger and solidity.

The method presented herein does not seek a conformal
transformation directly but, like the older approximate
methods, seeks to evaluate the interference at each airfoil
due to the presence of all the other airfoils of the cascade.

The velocity distribution on each airfoil is considered to be
the sum of that corresponding to its presence in the uniform
free-stream flow plus that corresponding to its presence in
the interference flow. The interference is calculated from
the velocity distribution on the airfoils so that the method
reduces to an iteration process in which, for the first approxi-
mation, the interference is computed by assuming the free-
stream velocity distribution to exist on each airfoil, and in
subsequent approximations this velocity is corrected accord-
ing to the interference derived in the preceding approxi-
mation. A solution is thus found for an arbitrarily specified
angle of attack, and this solution is used to find the conformal
transformation to the circle and thence the solution for any
other angle of attack.

The present method has been found appreciably less
laborious than the methods that seek the conformal trans-
formation directly and is also considered more flexible in
that it may be adapted to a variety of cascade problems that
would be difficult to solve by formal transformation methods;
for example, the problem of the flow about double cascades
(or superimposed lattices) or certain types of ‘‘inverse’”
problems involving the determination of the setting or
solidity for a given airfoil in cascade. Some of the features
of the interference and iteration methods used should also
be useful in the solution of flows involving a finite number of
interfering bodies.

SYMBOLS

flow function (complex potential)

velocity potential

stream function

velocity at infinity

circulation

mapping-function parameter

local velocity

vortex strength

source strength

complex variable of physical plane (z--iy)

fixed point in physical plane

complex variable of reference plane (¢4-i4)

profile chord

profile chord used in transformation of reference 7

cascade spacing (distance between corresponding
points on adjacent blades; see fig. 1)

central angle of perfect circle obtained in trans-
formation of reference 7

central angle of unit circle of figure 1

8 surface length on profile
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F16URE 1.—Flow singularities in circle plane and corresponding velocity vectors

in physical plane.

blade angle (angle between stagger line and normal
to chords; see fig. 1)

solidity (ratio of chord to distance between profiles)

angle between flow direction and normal to stagger
line

angle of attack relative to blade chord

angle of zero lift for cascade, relative to blade chord

static pressure rise

turning angle of flow

density of fluid

Gx, b, Fourier series coefficients
Subscripts:

f free stream

d disturbance

¢ compensating

T due to circulation change
a additional

T total

t  tail stagnation point

n nose stagnation point
TE  trailing edge

8 due to source rows
) due to vortex rows
z physical plane

¢ reference plane

0 mean flow

1 incoming flow

2 outgoing flow

No at flow direction Ay
N’ at flow direction A\’

THEORY OF INTERFERENCE CALCULATIONS

In order to explain better the basic concepts and pro-
cedures of the interference calculations, discussion of the
iteration steps will be postponed for the present, and the
interference calculations will be described as if they were
being used to verify a known solution.

Breakdown of the flow function into four components.—
Attention is fixed on one airfoil of the infinite cascade which
will be designated the central airfoil. The flow function on
the boundary of this airfoil is considered to be the sum of
the following components:

W, the flow function for the central airfoil, considered as
isolated in the free-stream flow (the vector average
of the flow far in front of the cascade and the flow
far behind the cascade). Inasmuch as the boundary
is a streamline in this flow, W,=®&,.

W, the disturbance along the contour caused by the pres-
ence of all the other airfoils of the cascade, designated
the external airfoils (W;=&,;+17%,).

W, the compensating flow function (which may have
singularities only within the central airfoil) that is
required to maintain the airfoil a streamline in the
presence of the disturbance flow. It is determined
by the condition that, on the boundary, its stream
function must be equal and opposite to the disturb-
ance stream function. Thus, W,=®,+1¥, where
V., =—V¥,.

Wr the contribution of the circulation that must be added
to maintain the trailing-edge condition; it has only a
real component (Wr=2%r).

The sum W;+ W,+ Wr represents the net change of flow
function due to the presence of the external airfoils; it will be
designated the additional flow function W,=®&,. The sum
W.+W, will be designated the total flow function Wp=3%&;.

The evaluation of the isolated, or free-stream, flow &, is
readily performed by the method of reference 7 and requires
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no further discussion in the present paper. The disturbance
flow can be calculated when the potential distribution (or
velocity distribution) on the external airfoils is known.
Finally, the compensating flow and the circulation flow are
readily determined, as will be shown, when the disturbance
flow is known. In the following sections two methods of
calculating the disturbance flow will be described: the
approximate source-vortex method and the exact contour-
integral method.

Disturbance flow by approximate source-vortex method.—
Each of the external airfoils is considered to be adequately
represented by an arrangement of about two sources, three
sinks (or negative sources), and five vortices distributed along
its mean line. The strengths and locations of these singulari-
ties are chosen on the basis of the chordwise thickness dis-
tribution and chordwise velocity distribution. The choice is
somewhat arbitrary and may be left to the judgment of the
worker; however, a detailed method of choice has been
described in the section entitled “Computational Methods.”
The disturbance flow, then, is that of about ten infinite rows
of singularities, equally spaced along the cascade direction
except that none are located where the central airfoil is to be
placed. The field of each vortex row is shown in figure 2
where, for convenience, the vortices are assumed to be of
unit strength, spaced at unit distance along the y-axis.
This figure is from reference 1 and the equation for the flow
is (reference 2)

i . 7
W= ~ 5, log, sinh 7rz+§;-r log, w2

In order to find the contribution to the disturbance flow
caused by a row of vortices at, say, 0.3 chord on the external
airfoils, the central airfoil, drawn to scale and properly
oriented relative to the cascade direction, is placed at the
center of figure 2, with the origin at 0.3 chord on the mean
line. The values of velocity potential and stream function
read at selected points along the airfoil contour, multiplied
by the assumed vortex strength, give directly the contribu-
tion of this vortex row to ®; and ¥,. By shifting the central
airfoil so that the origin is located, in turn, at each of the
other assumed vortex positions along the mean line and
repeating the foregoing process, the contributions of all the
vortices in the external airfoils are obtained at the same
points. The sum of these values at a given point on the
central airfoil represents the contribution of the vortices in
the lattice to the disturbance function W, at that point.
The contributions of the sources can be found in the same
way except that the lines marked ¥ are considered as —&
and the lines marked ® are considered as ¥. Sinks are
considered as negative sources.

Contour-integral method for evaluating disturbance flow
function.—In the preceding section, the disturbance field
was calculated approximately by representing each airfoil by
a somewhat arbitrary arrangement of vortices, sources, and
sinks distributed on the mean line. An airfoil may be
represented exactly by a continuous distribution of vortices
along its contour, the linear density of which at every point
equals the velocity on the airfoil at that point (reference 12).
The field at a point on the central airfoil due to a row of

corresponding surface elements of the external airfoils (that
is, a row of vortices of strength »r ds) may be obtained
directly from figure 2. Integration of this contribution
along the contours of the external airfoils provides an exact
determination of the disturbance field. The procedure is an
obvious modification of the preceding approximate method.

Let & and ¥ (without subscripts) denote, respectively, the
potential and stream function of the row of unit vortices in
figure 2. In order to determine the disturbance potential
and stream function at a point 2’ on the central airfoil, the
airfoil contour, drawn to scale and correctly oriented relative
to the cascade direction, is superimposed on figure 2 so that
the origin falls, in turn, at a number of points z on the con-
tour, and for each setting values of ® and ¥ are read at the
point 2’. 'Then the disturbance flow function at 2z’ is given
by

®a(e)= [ 20:(2) ds

¥, (2" ———fc\If@)T(z) ds

where

vp(2) local velocity on the airfoil at variable point 2z

s distance along airfoil contour

®, ¥ values read at 2’ when origin of figure 2 is at 2

and the integration is performed along the airfoil contour.
Since vr(2) ds=d®r(2), the foregoing equations can be re-
written as

By = f & ds(2)

Y, (2" =fc\I/ d®r(2)

so that the disturbance potential and stream function at
point 2’ are readily evaluated by plotting ® and ¥ against
&, and measuring the area under the curves.

Determination of compensating flow and circulation
flow—As has been indicated, the compensating flow func-
tion may have singularities only within the central airfoil
contour, and on the contour, the stream function must be
exactly equal and opposite to the disturbance stream func-
tion. From the known transformation of the isolated airfoil
to the circle, which was found in the process of determining
W,, the correspondence between points on the airfoil and
points on the circle is known. If, then, the desired com-
pensating stream function is expanded as a Fourier series
in terms of the circle angle ¢,

¥, =3 (@, cos ne+b, sin ne)
n=1

its corresponding velocity potential will be (reference 7) the
conjugate series

q’c=2 ('—bn cos ne-+a, sin nﬂo)
n=1

The determination of ®, from ¥, is readily accomplished by
the method of reference 13.
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FI1GURE 2.—Velocity potential and stream function for a row of vortices of unit strength spaced at unit distance along the y-axis
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In order to maintain the trailing-edge condition, a vortex
T', must be added at the center of the circle of such strength
that I'y/27 equals the value of —d®./dy at the trailing edge
(determined numerically or graphically from a faired plot
of &, against ¢). The corresponding contribution to the

_potentia,l is

- ,q)r=;;;_tp,,. -

The velocity potential ®,=&,+®,}-®r that constitutes
the net effect of putting the airfoil in the cascade (that is,
the net interference effect) may now be determined by simple
addition of the three components. Presumably, since the
calculations were made with the correct ®;, ®, should be the
difference between &, and ®,.

In the final step, ®, is differentiated with respect to dis-
tance along the airfoil to get the corresponding interference
effect », on the velocity, which should be the difference be-
tween v, and vy. Convenient procedures for performing
these calculations are discussed in the section entitled “Com-
putational Methods.”

ITERATION METHOD

In the preceding sections the basic concepts and procedures
of cascade interference calculations have been outlined. In
the present section, the application of such calculations in
the proposed iteration method of solving cascade flow will
be discussed.

As first attempted, the method was essentially as follows:
In the first step, @ is assumed to equal ®,and a first approxi-
mation to &, is calculated on this basis by the methods just
described. In the second step, & is assumed equal to the
sum of &, and this first approximation to ®,, and a second
approximation to ®, is computed. The succeeding steps
follow the same pattern and are continued until two succes-
sive @, distributions are essentially the same. 'The source-
vortex method was used for the earlier approximations, but
the final approximation, when convergence is practically
complete, was made by the contour-integral method. This
procedure, however, was found to converge relatively slowly
in some cases, and the general practicability of the interfer-
ence method depends on a slight modification of the source-
vortex method.

The modification depends upon the observations that the
contribution of the sources and sinks to ®, changes by rel-
atively little from one approximation to the next and that
the contribution of the vortices to ®, is nearly proportional
to their total strength and relatively independent of their
distribution. Obviously, if it were exactly true that the
contribution of the sources and sinks is constant and that
the contribution of the vortices is proportional to their total
strength, only one interference calculation would be required
and the solution could then be obtained through a simple
algebraic equation. Thus, let

Ty total circulation on airfoil in cascade

T, total circulation on isolated airfoil at same angle of attack
T, additional circulation (I'r—T})

constant contribution of sources and sinks to I,

T,, contribution of vortices to I, when T is assumed on all

external airfoils
Then, by the preceding assumptions,

r
Tr=T,+ r,,‘,+r—j T,

whence

Ff+ I‘as
e @)

11—

T,

Since the assumptions are not exactly true, the value of
T'7 so calculated is correspondingly inexact; however, it is
much closer to the true value than if it were taken simply
as T',+T, +T,,. Correspondingly, the potential

T
By =B+, T 1 e,
s

is much more accurate than the sum ®,+&, +&,,.

The second approximation is similarly adjusted. Thus,
corresponding to the &, distribution just obtained, a new
set of sources, sinks, and vortices are distributed along the
mean line, and new values of T, and T, are calculated.

Adjustment follows, as before, from the equation
PTz
FTZZPI+ I‘us+ﬁ I‘a,,
1

where the subscripts 1 and 2 refer to the first and second
approximations, respectively. Solving for I'z, gives

r~+4r
I‘T2= I ag (2)
1—-2
FT;

and, finally, the potential is given by
I'T2
¢T2=®f+@as+‘1-|—7,; (I:'au

This simple modification of the procedure is so effective
that, in the cases tried, the first step gave solutions that
would be satisfactory for many purposes and the procedure
had practically converged at the second step. The addi-
tional complication of keeping the source-sink and the
vortex effects separate so that T',, and T, can be separately
computed is relatively minor and amply repaid by the
rapidity of convergence.

After the source-vortex method has essentially converged,
a final approximation by the contour-integral method may
be desirable. In the cases computed, however, this final
step was found to introduce only minor changes in the result.

THE FLOW AT OTHER ANGLES OF ATTACK

From a known velocity distribution at a given angle of
attack, the angle of zero lift and the slope of the lift curve,
together with the velocity distribution at any other angle
of attack, may be obtained. For this purpose, the lattice

. ié‘:{

—
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is conveniently considered to be related conformally to an
isolated circle by a periodic transformation, which might
be, say, of the type used in reference 6, 8, or 9. The explicit
form of the transformation, however, is not needed for the
present purpose.

The flow function in the circle (¢) plane that corresponds
to the desired flow in the physical (2) plane is

Vid . - K T 2 %K
W= ——?;’;(e‘”Ologeg.—{__—;(-i-e”“ log, g—l_.z—x _Zi} log. 'S;—_ee"‘"‘
(3)

In the ¢-plane this flow may be interpreted as that due to
the system of sources, sinks, and vortices shown in figure 1.
The unit circle {=e® is a streamline of the flow and the
circulation about any contour enclosing this circle but not
enclosing the points {= ¢* is T (positive clockwise).

In the physical (2) plane, the complex velocities at the
points 2= = and 2=— = are determined by equation (3) and
the transformation. Thus,

(d_dg m: — Ve—imt1 % o= — Ve im
and

(Z—Z])_m =— Ve t—1q %i ef=—TV,e ix

where the angles and velocities are defined in figure 1. The
flow far from the lattice is seen to be the same as that of an
infinite vortex row in the uniform flow — V=i, It should

be noted (fig. 1) that Ny=ap+8, =a;+8, and N=ay+8."

In the following paragraphs it will be shown how to obtain
from the given solution in cascade the parameter K and the
stagnation points 6, and 8, for the corresponding flow about
the circle. These values fix the angle of zero lift and the
slope of the lift curve of the airfoil in cascade; together with
the known potential distribution they determine the con-
formal correspondence between the profile and the circle
and, hence, the velocity distribution at any angle of attack.

Since the airfoil contour (z-plane) is conformally related
to the unit circle (¢-plane), it follows that at any given angle
of attack «, the change of velocity potential from nose to
tail stagnation point on both upper and lower surfaces must
be the same for the circle and for the profile in cascade.
These potential changes can readily be obtained for the
single solution on the lattice from the final &, distribution.

The velocity potential on the unit circle is obtained from
equation (3). Thus,

& 1 cosh K+cos 6
V= _2—7r—;|:cos Ao loge(c.osh K—cos 6 +
2 sin N tan™ et o tan T 2 @

and the change of potential from nose stagnation point 8, to
tail stagnation point 6, is

A®_ 1
m— 5 {COS Ao ].Oge

T

(cosh K—-cos 6,) (cosh K+cos 6,)
(cosh K4 cos 8,) (cosh K—cos 6,)

(sin 6,—sin 6,) sinh
sinh?2K-sin 6, sin 4,

T tan-! (tan 8,—tan 6,) tanh K }
Vd * | tanh?K -t tan 6, tan 6,

This potential change may be obtained for either the upper
or the lower surface. Two values are obtained depending
on the choice of quadrant for the third term of equation (5).
The condition of zero velocity at nose and tail stagnation
points is

2 sin A\ tan™

(5)

sin 0 cos Ap—cos 0 tanh K sin )\0—2—;‘7 sinh K=0 (6)
[1]

By use of the known values of T, A®;, and Ay, equations (5)
and (6) can be solved simultaneously for 4, 6, and K.
Equation (6) can be considered as a quadratic in sin 6 and
with an assumed value of K determines corresponding values
of 6, and 6,, Equation (5) then determines A®;. By the
proper choice of values of K a curve of A®; against K may
be plotted such that at a point on this curve A®,=A®;.
The value of K at this point is the desired value; the corre-
sponding values of 6, and 6, are then given by equation (6).
A convenient initial choice for K is the value that corresponds
to a lattice of straight lines of the same stagger and of about
10 percent or 20 percent higher solidity. Figure 3 is of aid
in this respect. The computed values of K and 6,, together
with equation (6), determine the angle of zero lift (I'=0)
with respect to the airfoil chord, thus

tan 4
n=tan™ g =8 @)

and the slope of the lift curve, based on mean velocity, is
obtained by differentiating equation (6) with respect to \;
thus,

de, 4 +sin? 8,+sinh? K @®)

day ¢ sinh K cosh K

A correspondence between points on the airfoil and points on the unit circle may be obtained by comparing the values
of & computed by equation (4) with the values of &, from the known potential distribution. The points (z,4) on the

profile and 6 on the circle for which ®r=®, are corresponding points.

angle Xg is

dg| 1 d®;_ |dt
dz

The velocity on the lattice profile for the stream

dz

(%)=

Vodo —

)
cosh? K —cos? ¢ :l

gd_[cos Mo cosh K (sin §—sin 6,) —sin A, sinh K (cos §—cos 8
m
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where the term in brackets, which represents the velocity on the circle boundary, is obtained by differentiating equa-

tion (4).

It follows that the velocity corresponding to a new stream angle Ay is

»71) _ (" [cos Ay’ cosh K (sin 6—sin 6,)—sin N’ sinh K (cos §—cos 6,)]
Vo/ro \ Vo /2l cos Ay cosh K (sin §—sin 6,) —sin A, sinh K (cos §—cos 8,

.02

/
vd
/

T N

Soldity, 6
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3
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~
~

—
—
S

130 [T
——
\
[

i
| I///]//// /1/

i
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FIGURE 3.—Relation between solidity, blade angle, and parameter K for an infinite lattice of
flat plates.

The following relations, which describe the flow far away
from the lattice, are of interest. The stream angles \; and
Az at z=o and z=—» are

sin )\0+%
>\1= tan™?! — =
COS Ag

and

. r
Sin Ag— 3Vd

_— -1
Ap=tan €OS A

and the angle through which the fluid is turned by the lat-
tice is given by

825679—49——-2

9

Va ©0os Ao

)

The rise in static pressure across the lattice is

)=

=c0s? A (sec? \j—sec? Np)

w=tan‘1

REMARKS ON CONTOUR MODIFICATIONS CORRESPONDING
TO LOCAL PRESSURE CHANGES

In reference 14, the modification of an airfoil contour to
obtain, approximately, desired small changes in the pressure
distribution is discussed. The method, based on the for-
mulas of reference 7, evaluates a slight modification of the
conformal transformation of the circle to the airfoil, such that
the stretching factor at every point is changed in proportion
to the desired relative change in local velocity.

Although in reference 14 the airfoil was assumed to lie in
a straight uniform field, the treatment is equally applicable
when the airfoil is in a curved or distorted flow field.  Accord-
ingly, the procedure should be applicable to airfoils in cascade,
provided the same modification of the external airfoils leaves
the disturbance flow field essentially unaffected. This
condition may mnot always be satisfied; however, in such
cases the method could possibly be improved by a procedure
analogous to that described in the seetion of the present
paper entitled “Iteration Method.”

COMPUTATIONAL METHODS

The basic theory has been presented. In the following
sections some of the methods used for performing the actual
computations will be discussed.

Selection of points for evaluation of disturbance flow.—
The determination of the compensating flow by the method
of reference 13 requires that the disturbance flow be evaluated
at points that, by the conformal transformation of the
isolated airfoil to a circle, correspond to points equally
spaced about the circle. These points, which are located by
reference to the conformal transformation, are preferably
chosen so that one is at the trailing edge. Experience has
shown that 12 points at 30° intervals yield acceptable results,
at least in the first approximation, but that 24 points at 15°
intervals are desirable in the final approximation for best
accuracy. If the final approximation is by the contour-
integral method, which is rather tedious, an acceptable
compromise is as follows: Evaluate ®; and ¥, directly at 15°
intervals only in the region of the leading edge and at 30°
intervals over the remainder of the contour, interpolating
from a faired curve to determine ®; and ¥, for the remain-
ing 15° interval points.
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Inasmuch as values for the 12-point and 24-point methods
are not included in reference 13 the following table is pre-
sented:

Cr
k
n—6 n=12
1 0. 62201 0. 63298
3 . 16667 .20118
5 . 04466 . 10860
7T | e . 06394
9  } - 03452
11} ieeaa- 01097

Evaluation of &, and v,—Integration of equation (36) of
reference 7 along the circle boundary yields the values of the
potential &, at points on the airfoil as follows:

%’zzae%[‘p sin (a+B)—cos (a+¢)] (10)
[}

where

a angle of attack

B angle of attack for zero lift

ae¥? radius of the circle to which the airfoil transforms
@ angular position along the circle, as determined by

the transformation

If the transformation has been performed as recommended
in reference 7, the constant a will be slightly less than one-
fourth the chord. Although the potential discontinuity (cor-
responding to the circulation) may, without loss of gener-
ality, be placed at any point on the contour, the trailing
edge will generally be found to be the most convenient
location.

The additional velocity v, is given by the derivative along

the surface %(Isla, it may be determined by numerically or

graphically differentiating ®, with respect to the circle
angle ¢ and multiplying this slope by Z;sf Thus,

Pa 1 dfgl_ L dq{@ de (11)
VO—VO dSMVO d(p ds

The value of% may be obtained from equations (37) and

(38) of reference 7. Thus,
Z—; =qe¥ ZLSP
(1 +_€ e¥o
de
- AV’ (12)
2\/ [1 + (77@) :I [sinh?¥ -+ sin?d]

or
de
1 +d—0

do_
as 20 \/[H((%,)z] [sinh®¥+sin?]

where the symbols ¢, 8, and ¥ are defined in reference 7.

The cascade solidity need be taken into account only when
the airfoil sketch to be used with figure 2 is constructed.
For the subsequent calculations, any convenient airfoil
chord may be used, provided only that the same chord is
used for the external airfoils and for the central airfoil. The
reason is as follows: The strengths of the sources, sinks, and
vortices used to represent the external airfoils are propor-
tional to the assumed airfoil chord; hence the additional
potentials induced on the central airfoil will be proportional
to the assumed chord. Sinece both the additional potential
&, and the distance s along the contour are proportional to

a

the chord, the additional velocity vaz% will be independ-

ent of the chord.

The chord may then conveniently be chosen as that cor-
responding to =1 since ¢ would then not appear in equations
(10) and (12).

The net velocity at a point on the airfoil surface is the
algebraic sum of the velocity on the isolated airfoil and the
induced velocity v, at that point.

Selection of vortices for source-vortex method.—For cas-
cades of about unit solidity, the vortex distribution for an
airfoil of conventional design may be represented by five
vortices spaced on the mean line at 0.1, 0.3, 0.5, 0.7, and
0.9 of the chord. The strengths of the vortices are deter-
mined by the known chordwise distribution of potential
&, on the upper and lower surfaces for the given approxima-
tion. Thus, the difference in potential between the upper
and lower surfaces at 0.2 chord is approximately the total
vorticity between the leading edge and 0.2 chord and is
considered to be concentrated in the vortex at 0.1 chord;
similarly, the increase in this potential difference between
0.2 chord and 0.4 chord yields the strength of the vortex at
0.3 chord, and so on. The total vortex strength must satisfy

. T _ ¢
the equation VT 2

Selection of sources and sinks for source-vortex method.—
The selection of sources and sinks to represent the thickness
distribution of airfoils is less readily systematized than is the
selection of vortices to represent the lift distribution. For
conventional airfoils, a reasonably satisfactory representa-
tion is generally attainable with a source at about 0.025
chord, a second source midway between the nose and the
position of maximum thickness, and sinks at 0.5, 0.7, and
0.9 of the chord. The strength of each source or sink is
taken as the difference between the “internal flow” at a
station midway between it and the preceding source, and
the internal flow at a station midway between it and the
following source. This internal flow at a given station is
estimated to be the product of the thickness and the average
of the upper and lower surface velocities at that station.

Obviously, not all airfoil shapes will be best treated accord-
ing to the pattern just described; however, little ingenuity is
required to adjust the treatment to a particular shape.
In any case, the total source strength must equal the total
sink strength.
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PROCEDURE

A suggested step-by-step procedure is as follows:

(1) Obtain the velocities on the airfoil at the given angle
of attack in a uniform stream by the method of reference 7.
This step also determines a conformal correspondence be-
tween points (z, y) on the airfoil and angles ¢ on a ecircle,
and hence the potential distribution ®, by equation (10).

(2) Using the procedure described in the section entitled
“Computational Methods,” choose sources, sinks, and vor-
tices to represent the airfoil.

(3) Choose points around the airfoil at which the disturb-
ance function W, is to be found; these points are conven-
iently chosen, by reference to tte conformal transformation,
to correspond to 24 (or 12) equal intervals about the circle.
By use of figure 2, determine at these points the contributions
to ®; and ¥, of each source and vortex row. Sum separately
the values due to sources and vortices at each point.

(4) Form the compensating functions ¥,=—%¥, both for
vortices and sources and determine the conjugate functions
&, by the method of refevence 13. Plot &, against ¢ and
determine the slope at the trailing-edge point. The relation

(>} . . .
I,=—2x <%°> determines the circulation changes T', and
© /)18 s

Ty, due to the source and vortex rows. Obtain I'r by means
of cquation (1).

(5) At cach point
(a) Sum the values of ®, and ®. due to the vortex rows
T:
7
(by Sum the values of ®; and &, due to the rows of

. . T
and multiply by the ratio r

sources and sinks.
ae o . 12
(¢) Find &r=(T'r—T) or

(6) Sum the terms (a), (b), and (c¢) of step (5) Lo get &,;
plot ®, against the circle angle ¢, and determine the slopes
at the points used in the original conformal transformation

(step (1)) at which points the stretching factor (é—? will be

known. (Another procedure is to determine the slopes at
the 24 equally spaced points by some numerical method and
then to determine the stretching factors at these points by
interpolating from the values found in the conformal trans-
formation.) The additional velocity is given by equation
(11); the net velocity on the airfoil surface is the sum of the
additional velocity and the velocity on the isolated airfoil.
The corresponding total potential is ®,=&,+&,+Pr+d,,
where &, is known from step (1).

Using this new potential and velocity distribution, repeat
the procedure, starting from step (2). The only modification
is that I'; (step (4)) is now obtained from equation (2), and
in step (5a) the correction factor is I‘T2/I‘Tl. The process is
continued until the changes in lift and velocity distribution
become small. For practical purposes, the results obtained
in this manner may be entirely satisfactory. More accurate

results may be obtained, however, by application of the
contour-integral method as described in the following three
steps.

(7) Place the airfoil drawing on figure 2 with the origin,
in turn, at each of the 24 (or 12) points at which values are
known from step (6) (considered as z-points), and read the
chart at the same 24 points (considered as z’-points). As
previously noted, some of the z’-points may be neglected.
For each of the z’-points plot the values of ® read at that
point against the corresponding values of ®r. By planimetry
find the area between the faired curve and the ®,—axis to
determine ®;. The value of ¥, for each point is determined
similarly from a plot of ¥ against the corresponding values
of ®r.

(8) Form the function ¥,=—¥,, determine its conjugate

®,; the circulation change is T';=—2rx (c(i1<1>0> and the
©/TE

potential ®r=T, »2%-

(9) Sum the terms ®, &, and ®r to get ®,, plot against
the circle angle ¢, and measure the slopes. The velocities on
the airfoil surface in cascade are obtained as deseribed in
step (6). Unless this veloeity distribution differs widely
from that obtained in the preceding approximation, it
should not be neecessary to repeat the procedure.

The velocity distribution at another angle of attack may
be obtained as follows:

(a) Solve equations (5) and (6) for 6,, 9, and K. A
method of solution is indicated in the discussion following
equation (6). The angle of zero lift and slope of the lift
curve may then be obtained from equations (7) and (8).

(b) Obtain the potential distribution ®; as a function of ¢
(equation (4)); compare with the known &7 to get a corre-
spondence between 8 and position on the airfoil. Equation (9)
then yields the veloeity distribution at stream angle Ay,

ILLUSTRATIVE EXAMPLES

Example I.—The velocity distribution was obtained on the
NACA 4412 airfoil in the configuration shown in figure 4,
where f=0°, 6=1.032, and X\,==9.7°. This example has been
treated in reference 8. In accordance with the foregoing
procedure, results as follows were obtained:

(1) In figure 5 is shown the chordwise velocity distribu-
tions of the isolated airfoil at the angle of attack of 9.7°, as
obtained in a second approximation by the method of
reference 7. The lift coefficient at this angle of attack is
1.67 (that is, 53 =0.837), the angle of 7ero Lft of the airfoil
is —4.24°, and the slope of the lift curve is 6.95 per radian.

(2) By use of the procedure suggested in the section
entitled “Computational Methods,” five vortices, two
sources, and three sinks were chosen to represent the airfoil
initially (fig. 6 and table I).

(3) With the first location at the trailing edge, 12 locations
on the airfoil were found corresponding to 30° intervals of
the circle angle ¢. These locations are shown in figure 6.
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FIGURE 4.—N A CA 4412 airfoil in lattice arrangement. g=0° ¢=1.032; N=9.7°.

Fi1GURE 6.—N ACA 4412 airfoil showing chosen locations of sources and vortices along mean
line and locations at which chart readings were taken.

(The primed points correspond to 15° intervals.) Readings
taken at these points from figure 2 are given in table IT.
These readings, multiplied by the appropriate source and
vortex strengths, yielded the values of &, and ¥, due to
sources and vortices given in table IIT.

(4) The conjugate functions &, were determined by the
12-point method and are given in table IV. The slopes of
these functions at the trailing-edge point yielded circulation

as Iy, )
changes C_VO_O'OOG and EVO~—0.538, from which (equa-
'y

tion (1)) cV0:0'513' This value corresponds to a first ap-

proximation to the lift coefficient in cascade (¢;=1.03).
(5) In table IV are given the values of ®, and ®,, due to
vortex rows multiplied by the ratio {f (equation (1)), the
7
values of ®,, and ®,, due to source rows, and the function
(T T £
&r=(Tr—1TYy) 9
(6) The additional potential &,=&,+®,+&®ris plotted in
figure 7. Slopes of this function were measured at points at
which the stretching factor is known from step (1). The

additional velocity #, was then computed by equation (10);
the algebraic sum of », and the velocity in isolated flow

[ i I ! [ r T | T
A +  Source-vortex method: first approximation; €;=1.03
1 o Source-vortex method; second opproximation; c¢;=0.99__|
\ O Contour-infegrof method; first approximatior; ¢;= 0.99
AN —— Method of reference 8; ¢; =00
Ehd—C —~—— /solated airfoil flow; ¢;=167
a N
AT
+ >~ -
G ~_]
~~~{__
( | .
tr— | \\\~_\\
_‘““‘~4r~____;;~~\‘\
v/Vo S
; — T~
—
/ | IR
: B/ [ PR (RN A RS S -
| / _____________._———--—-——'——""—— \\'\}
|8 P \
1 Rl
[} 7
1 i
! /
i
(1
7
/
\'/
0 J/ .2 .3 .4 .5 .6 7 .8 .9 10
x/c

FIGURE 5.—Velocities on NACA 4412 airfoil in isolated flow and in lattice arrangement. g=0°: ¢=1.032; a0=9.7°,
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FiGURE 7.—The additional flow function ®. against circle angle for NACA 4412 airfoil in
lattice arrangement. B8=0°; ¢=1.032; cp=9.7°.

yielded the cascade velocity (fig. 5). This velocity distribu-
tion, together with the total potential ®r, formed the basis
for a second approximation (figs. 5 and 7). Results of this

ag I‘a,
CVO—O.OOG, s

Comparison of the velocity distribution with that of the
first approximation shows that the process has satisfactorily
converged.

(7) The same 12 points around the airfoil were chosen as
z-points; these, together with four others at 15° intervals
around the nose (primed points in fig. 6) were used as
2’-points. Readings from the chart (fig. 2) are given in
table V. These values were plotted against total potential
&, (arbitrarily fixed at 0 on the lower surface at the trailing
edge). (A sample curve is shown in fig. 8.) These curves
were integrated by planimetry. The results—the disturb-
ance potentials and stream functions &, and ¥,—are given
in table VI.

(8) The function &, (table VI) was obtained by 24-point
harmonic analysis and synthesis, with the use of interpolated
values of ¥, for the points at which it was not found ex-
plicitly. The slope of the curve at the trailing-edge point

approximation are = —0.365, and ¢,=0.99.

o
-.04 :
3 4“‘/
-.08
o ¥
-~ 12 \
-16 \
-20
-0 -8 -6 -4 -2 o 2 4 .6
¢r

FIGURE 8.—Typical curves for determination of $s and ¥¢ by contour-integral method.
These curves are for point g on NACA 4412 airfoil in lattice arrangement. 8=0° ¢=1.032;
p=9.7°,
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yielded cF—TZ,=_O'344’ from which a lift coefficient ¢;=0.99
was obtained.

(9) The additional potential ®,=&,}& .4 ®r is plotted in
figure 7. The velocity distribution was obtained as before
and is plotted in figure 5. The process appears to have
essentially converged. ‘

Simultaneous solution of equations (5) and (6) (table VII)
to find the value of K at which AP, _Adr gave K=0.3083,

CVO CVQ
6,=—7.57°, and 0,=181.72°. Equations (7) and (8) then
yielded the angle of zero lift y=—5.75° and the slope of the

lift curve %=3-7 1. These values may be compared with
0

8431:3.71 from reference 8.
2 1]

7= —>5.94° an

In figure 9 is shown a plot of the potential &; against 6 com-
puted by equation (4). A constant has been added to make
the potential equal to zero on the lower surface at the trailing
edge. The known total potential in cascade ®, and the
corresponding values of z/c are given in table VIII. Values
of 6, picked off the plot at points where ®; is equal to the
given values of ®;, are shown in the adjacent column. The
correspondence between airfoil position and the angle 6 is
thus determined. For the flow angles A\y/=1.81° and
N =—5.94°, the velocity distributions were computed by
equation (9). In figure 10 these results are compared with the
distributions given in reference 8. The main results of the
calculations are summarized in table IX.

Example II.—In an effort to obtain in the simplest possible
manner a reference solution at large blade angle, concerning
the accuracy of which there could be little doubt, a lattice
was derived by a modified Joukowski transformation. This
transformation is discussed in detail in the appendix. The
cascade configuration is shown in figure 11 where B=45°,
¢=1.006, and A\,==49°. This lattice will be referred to as
the ‘““derived airfoil lattice.”

-8 N /

~1.0

~/80 -/40 -100 -60 -20 20 60

Circle angle, 8, deg

100 140 180

FIGURE 9.—Velocity potential on unit circle in ¢-plane, for NACA 4412 airfoil in lattice
arrangement. $=0°; 0=1.032; ap=9.7°.
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(a) ap=—5.94°, (b) ag=1.81°.

F1GURE 10.—Velocity distributions on NACA 4412 airfoil in lattice arrangement. #=0°; 0=1.032.

The procedure followed for the source-vortex method was
similar to that of the first example; the calculations are
outlined in figures 12 to 14. Because of the unusual shape
of this profile, only one source was used and an additional
sink was inserted at 0.3 chord (fig. 12). From a lift coefli-
cient ¢;=0.84 in isolated flow, a single approximation yielded
a lift coefficient ¢,=0.54 in cascade, which was the same as
that derived from the solution by conformal transformation.
Since the computed changes in vortex distribution were small,
no further approximations were made by this method. By
reference to the velocity distribution of this approximation
(fig. 13), the process may be seen to have essentially con-
verged to the correct solution.

The final contour integration resulted in a lift coefficient
¢;=0.54 and the velocity distribution shown in figure 13.
The main results of the calculations are summarized in
table X.

LanGLEY MEMORIAL AERONAUTICAL LABORATORY,
NarionaL Apvisory COMMITTEE FOR AERONAUTICS,
Lancrey Fiewp, Va., January 10, 1947,

DN n

FiGURE 12.—Derived airfoil showing chosen locations of sources and vortices along mean line
FIGURE 11,—Derived airfoil lattice. 8=45°; o=1.006; ho=49°. and locations at which chart readings were taken.




INTERFERENCE METHOD FOR OBTAINING THE POTENTIAL FLOW PAST AN ARBITRARY CASCADE OF AIRFOILS 13
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© Contour-integral method; €, =0.54
2.0 + Source-vortex method; first opproximation; ¢;=0.54__]

Derived by conformal tronsformatiorn; ¢;=0.54
— —= /solated flow; ¢;=0.84
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FIGURE 13.—Velocities on derived airfoil lattice. B8=45°; o= 1.006; Ao=49°.
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F16URE 14.—The additional low function ® 4 against circle angle for the derived airfoil lattice.
B=45°;, 0=1.006; Ao=49°.




APPENDIX
DERIVED AIRFOIL LATTICE

The symbols used in the appendix are defined in figure 15
and should not be confused with similar symbols used in the
main text of the paper.

Consider the transformation (reference 10),

e=p- < —i8 loge K-l—e’f’ log. ?i‘ii) (A1)

The unit circle (¢-plane) becomes a lattice of horizontal
straight lines in the z-plane, spaced at unit intervals along the
stagger line, making an angle -g—B with the axis of reals.

The solidity of this lattice is

vsinh2K -+ cos?8-+cos B8

sinh K +

2
= (cos B log,

. sin B
sin f tan” x/s1nh2K+coszﬂ>
This relation is plotted in figure 3.

A closed curve enclosing the points {= £¢ % but not en-
closing the points {=+¢* will transform by equation (Al)
into an infinite lattice of closed shapes in the z-plane, spaced

in the same manner as the straight-line lattice. Such a
curve is the circle
g—ze\b-l-ie
:e‘l’O"’id’_i_reils
i
=1.07¢*4+40.09¢ 37
S/reanh
v r/2
e \\eK AV C‘solg i"a
-© &%

'-f =e¥o*?  reid

FiGURE 15.—Flow singularities in ¢-plane for derived airfoil lattice.
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This circle, where 8=45° and K=0.331, becomes the lattice
of profiles that has been referred to as the derived airfoil
lattice. A flow for which this circle is & streamline and which,
in the z-plane, has no singularities outside the profiles, is that
due to the system of sources, sinks, and vortices shown in
figure 15. The velocity on the circle boundary due to this
system is

. T
<%>r=A cos Ao+ B sin )\0—1—05{70

where
. sin (¢—8)  sin (¢—8y) ]|
A=eh [HI_COS (¢—8,) Hy—cos (¢—és)_|
—_p r Jl _ J2 ]
B=e | H,—cos (¢—6,) Hy—cos (¢—83)_
—e~V F Ji Js 7]
C=em | H,—cos (¢—51)+H2—cos (p—02) |
and
- 7 sin &
8i=tan™ eE—r cos §
_, —rsinéd
s, =tan e¥47 cos &

o)
1)

my=e"% /1?1 K —2rek cos &

ma=e~¥ 7’ ¢+ 2re¥ cos 6

The constant T', which is the circulation about each profile
(positive clockwise), is determined by the trailing-edge
condition as

T B .
V= 2 (% cos )\0+Z781n )\o) (A2)

where A, B, and C are evaluated at the angle ¢ which
corresponds to the trailing edge of the profile. The angle
of zero lift n with respect to the airfoil chord is obtained from

equation (A2) by setting I'=0; thus,

A
— —1._ —
tan B

The stretching factor from the circle to the lattice is

dg _ﬂ\/é
2l 2VE
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where
D= (cosh 2K—cosh 2y cos 26)*-}- (sinh 2¢ sin 26)?
E=4 cos’8 cosh?K (cosh%}— cos?) -}
4 sin?B sinh? K (cosh?y —sin?8) —
sin 28 sin 26 sinh 2K

and y and 0 are obtained from Yo, ¢, 7, and § as

_1 €Y sin ¢-}-7 sin &
e¥ cos ¢+ cos

f=tan

e¢=r cos (0—8)+ +/e*—r2 sin® (§—38)

The velocity at any point on the surface of a profile is

(%).~(%),
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TABLE L—STRENGTHS OF SOURCES AND VORTICES CHOSEN TO REPRESENT THE NACA 4412 AIRFOIL LATTICE

4 m
cVo Vo
Vortex Source
location location
(fig. 6) First ap- | Second ap-| (fig. 6) First ap- | Second ap-
proxima- | proxima- proximsa- | proxima-

tion tion tion tion

B8 0.379 0. 290 3 0.097 0.101

8 . 184 . 008 v . 044 . 044

€ . 128 . 062 € —., 043 —. 041

e . 097 . 042 I3 —. 045 —. 047

7 . 0562 .023 7 —. 0563 —. 057

TABLE II.—CHART READINGS FOR NACA 4412 AIRFOIL LATTICE, SOURCE-VORTEX METHOD

@ for vortex row of unit strength ¥ for vortex row of unit strength
\ %rigin at
Reading at (&) « B L s € ¢ n « 8 it 8 € ¢ 7
(fig. 6) \

a. 0. 002 0.008 0.008 0.011 0.010 0. 004 0. 001 —~0.211 —0.184 —0.176 —0.120 —0.070 —0. 026 —0.003
b... . 002 . 008 . 008 L011 . 010 . 003 ] —. 182 —. 158 —.150 —. 086 —. 047 —. 013 [}

c. 004 008 .008 . 009 . 005 —. 001 —. 002 —. 115 —. 092 —.083 —. 044 -, 011 0 —.010
d... 005 006 . 006 . 004 —. 002 —. 007 —. 007 —. 045 —. 030 —. 026 —. 004 0 ~-. 019 —. 056
e.. 002 002 002 —. 004 —. 012 —.013 ~—, 013 —. 007 —. 001 0 —. 002 —. 025 —. 040 —. 125
f. 0 —. 001 —. 002 —. 008 —.015 —.013 —. 011 0 —.001 —. 001 —.019 —. 067 —.115 —. 174
£ 0 0 —. 003 —. 005 —.002 0 0 —. 003 —. 002 —.024 —. 063 —. 120 -.183
h -. 002 0 .001 . 002 . 005 .010 .016 0 . 001 0 —.012 ~—. 044 —. 090 —.156
i —.012 —. 007 —. 006 . 001 008 .015 .023 —. 014 —. 006 —. 004 .001 —.013 —. 048 —. 008
j- -.0 —.015 —.014 —. 006 0 . 010 . 016 —. 058 —. 042 —~.037 —.010 . 001 ~. 010 —. 042
k —. 016 —. 011 ~. 010 —. 005 002 0 . 004 -, 125 —.102 —. 094 —. 050 —.018 0 —. 006
S —. 005 0 . 005 004 . 001 0 ~.185 —. 161 —.153 —. 097 —. 048 —.015 0
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TABLE III.—CONTRIBUTIONS OF INDIVIDUAL SOURCE AND VORTEX ROWS TO THE DISTURBANCE FLOW FUNCTION
ON THE NACA 4412 AIRFOIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METHOD

Vortex location Source location
Point on airfoil (fig. 6) 8 3 € [ 7 a v € e ]
&4 due to vortex rows &g due to source rows
0. 0030 0. 0020 0.0013 0. 0004 0 0. 0205 0. 0077 —0. 0030 —0. 0011 —0. 0001
. 0030 . 0020 . 0013 . 0003 0 L0176 . 0066 —. 0020 —. 0006 0
. 0030 . 0016 . 0006 —. 0001 —. 0001 L0112 . 0036 —. 0005 0 ~. 0005
0023 . 0007 —. 0002 —. 0007 —. 0004 . 0044 0011 0 —. 0008 —. 0030
0008 —. 0007 —. 0015 —. 0013 —. 0007 0007 0 —. 0011 —.0018 —. 0065
—. 0004 —. 0015 —. 0019 —. 0013 -. 0006 0001 —. 0024 —. 0052 —. 0092
0 —. 0006 —. 0006 —. 0002 0 0 0001 —. 0027 —. 0054 —. 0097
0 . 0005 0006 . 0010 . 0008 0 —. 0019 —. 0040 —. 0083
—. 0026 0002 0010 . 0014 L0012 . 0014 0002 —. 0006 —. 0022 —. 0052
—. 0057 —. 0011 0 . 0010 . 0008 0056 0016 0 —. 0004 —. 0022
—. 0042 —. 0009 0003 . 0002 0121 0041 —. 0008 0 —. 0003
0 0009 . 0005 . 0001 0 . 0180 0067 —. 0021 —. 0007 0
¥4 due to vortex rows ¥4 due to source rows
—0. 0698 -0.0221 —0. 0090 —0.0024 —0. 0001 0. 0002 0. 0004 —0. 0004 —0. 0002 0
—. 0599 —. 0176 —. 0060 —. 0013 0 . 0002 . 0004 —. 0004 —. 0001 0
—. 0348 —. 0081 —. 0014 0 —. 0005 . 0004 . 0004 —. 0002 0 . 0001
—. 0114 —. 0007 0 —. 0018 —. 0029 . 0005 . 0003 . 0001 . 0003 . 0004
—. 0005 —. 0005 —. 0032 —. 0039 —. 0065 . 0002 . 0001 . 0006 . 0006 . 0007
—. 0003 -—. 0035 —. 0073 —. 0111 —. 0091 0 . 0001 . 0006 . 0006 . 0006
—. 0010 —. 0044 —. 0081 —. 0116 —. 0096 0 0 . 0002 . 0001 0
0002 —. 0021 —. 0056 —. 0087 —. 0081 —. 0002 0 —. 0002 —. 0004 —. 0008
—. 0023 —. 0002 —. 0017 —. 0046 —. 0051 —. 0012 —. 0003 —. 0003 —. 0007 —. 0012
—. 1057 —. 0018 0001 —. 0009 —. 0022 —. 0019 —. 0006 0 —. 0004 —. 0008
—. 0386 —. 0092 —. 0022 0 —. 0003 —. 0016 —. 0004 —. 0001 0 -—. 0002
—. 0610 —.0178 —. 0061 —. 0014 0 ~—. 0005 —. 0002 0 4}

TABLE IV.—TOTAL EFFECT OF SOURCE AND VORTEX ROWS, AND CORRESPONDING DERIVED POTENTIALS AND
VELOCITIES, ON NACA 4412 AIRFOIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METHOD

Values at points on figure 6 Values at points where t;—i is known
Point v v v
¥a 2. P | W B | Pa | @st@)Tn|  ar N By or z |1 dbs| do v v -
cVo cVe Vo cVo cVo cVo Ve Iy Vs cVo Vo cVo ¢ cVode ds [0) ® (‘;
Sources Vortices Upper surface
0. 0000 0.0014 0.0240 (—0.1034 0. 0013 0. 0067 0. 0049 —0.0270 0. 0033 0. 6056 0. 6089 0.0125- [—0. 0356 7.153 |—0. 254 2.287 2.033
. 0001 0014 0216 | —.0848 L0414 . 0066 . 0295 —. 0540 | —.0015 . 5355 . 5340 L0500 | —. 0427 4. 541 —.194 2.002 1.808
. 0007 0015 0138 | —.0448 . 0513 . 0050 . 0347 —. 0810 | —.0310 . 3502 3282 1000 | —. 0456 3. 500 —.160 1.853 1. 693
. 0016 0009 0017 | —.0168 . 0314 . 0017 . 0206 —. 1080 | —.0848 . 1429 . 0581 2000 | —. 0542 2.733 —. 148 1.719 1. 571
0021 | —.0003 [ —.0087 | —.0146 0040 | —. 0034 . 0004 —.1350 | —.1436 | —. 0365 | —. 1801 .4000 | —. 0606 2.218 —. 140 1.523 1.383
0019 | —. 0020 | —.0167 | —.0313 | —. 0060 | —.0057 —. 0065 —.1620 | —.1872 [ —. 1126 | —.2998 . 6000 | —. 0506 2.133 —. 108 1. 345 1. 237
0003 | —.0030 { —.0177 | —.0347 0037 | —. 0014 . 0014 —.1891 | —. 2084 | —.0459 | —. 2543 L8000 | —.0226 2.498 —. 057 1.178 1.121
—.0016 | —. 0032 | —.0142 | —.0243 0044 . 0029 . 0045 —. 2161 | —.2290 L1642 | —. 0648 .9000 | —.0078 3.226 —. 025 1.078 1.053
—.0037 | —. 0018 | —.0064 | —.0139 | —.0098 L0012 —. 0053 —.2431 | —. 2566 . 4802 2236
—. 0037 0007 0046 | —. 0205 | —. 0356 | —.0030 —. 0236 —.2701 | —. 2884 . 8365 . 5481
—. 0023 0022 0151 | —. 0503 | —. 0505 | —.0046 —. 0338 —.2971 | —. 3136 1.1558 . 8422 Lower surface
—. 0007 0022 0219 | —. 0863 | —, 0372 . 0015 —. 0218 —.3241 | —. 3218 1.3716 1. 0498
0000 0014 . 0240 | —.1034 0013 . 0067 0049 —. 3511 | —. 3208 1.4451 1.1243
0.0125 |—0.0451 8.263 |—0.372 0.458 0. 086
. 0500 | —. 0651 4. 603 —. 300 —. 314 —. 614
L1000 | —.0847 3.304 —. 280 —. 541 —. 821
L2000 | —.1027 2.413 —. 248 —. 676 —. 924
.4000 | —.1157 1.914 —. 221 —. 754 —. 975
. 6000 | —.1008 1.903 —. 192 —. 796 —. 988
. 8000 | —.0621 2.335 —. 145 —. 834 -—. 979
.9000 | —. 0328 | 3.080 -.101 —. 845 —. 946

1‘1 Velocities along the surface are considered positive when directed from the trailing edge to the leading edge on the lower surface, and from the leading edge to the trailing edge on the upper
surface,
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TABLE V.—CHART READINGS FOR INTEGRATION WITH RESPECT TO &;; NACA 4412 AIRFOIL IN CASCADE;
CONTOUR-INTEGRAL METHOD .

— -
2! \ a b c d e f g h i j k 1
11.0818 .
Op— 20,5975 0. 5400 0.3106 0. 0401 -0,2022 —0.3280 —0.2911 —0.1064 0.1783 0. 4986 0. 7954 1. 0060
T ®
0 —0. 001 —0. 0040 -0.0095 —0.008 0.004 . 020 0.029 0.0215 0.001
0 [} - —. 0085 —. 006 . 005 021 0275 .0 (i}
0 [ —. 0015 —.006_ . 005 .006_ 0195 0215 . 0105 —. 003
—. 003 —. 0015 —. 0015 -, (01 . 0065 0145 010 —. 0035 —. 009
—.008 —. 006 —. 0015 0 . 0005 .004 0055 -—. 006 —.0205 —.016
—. 010 —.007 —. 002 0 0 . 0025 0 —. 012 —.025 —.018
—. 008 —.005 —. 001 0005 0 . 0005 —. 0025 —.014 —.026 -.014
—.001 .002 002 0 0 —. 0035 —.014 —.024 —.010
007 0065 . 0065 0045 0 0 —. 002 —. 010 —.018 —.002
015 012 011 0055 0 0 —. 0005 —. 065 —.0125 006
022 019 . 0145 0050 —. 0035 —.003 0 —. 0025 —. 006 015
027 .022 .014. 001 —.008 —. 0065 . 001 —. 0005 —. 0015 0195
0285 .022 . 0095 —. 006 —. 0155 —. 0115 . 003 0 . 0005 0215
020 . 0105 . 0050 —. 0205 —.027 —. 0185 . 006 0 0 016
0065 —. 0015 .012 —.023 —. 025 —. 014 —. 0005 .008 . 0035 0 004
0 —. 003 . 0085 —.015 —. 017 —. 001 —.015 .021 . 0155 004 0
L 4
0 —0.002 —0.024 —. 083 —0.154 -0. 205 —0.217 —0. 186 —0. 130 —0. 066 —0.018 —0.002
—.002 0 —. 012 —. 063 —. 132 —.178 —.187 —. 159 —. 102 —.045 —. 0075 0
—.023 —.012 0 —. 0205 —.073 —. 111 —.120 —. 095 —.048 —. 0085 .001 —.0125
—.081 —. 060 —. 0205 0 —.018 —. 042 —.048 —. 030 —. 004 0025 —.023 —. 062
—.153 —.128 —.070 —.0175 0 —. 006 —. 0075 0 . 002 —. 023 -.077 —.131
—.184 —.157 —.091 —.031 —. 003 —. 0005 —. 0015 002 —. 0035 —. 040 —. 100 —. 159
—. 204 —.180 —. 109 —. 042 —. 007 0 0 0015 —.011 —.053 —. 119 —.181
—. 214 —. 189 —. 119 —.048 —. 0085 0 0 —. 001 —. 017 —. 064 —. 129 —. 191
—. 212 —. 186 —. 116 —. 047 —. 008 0 0 —. 0015 —. 0175 —. 063 —.128 —. 189
—. 205 —.176 —. 110 —. 0415 —. 005 . 0015 0 —. 001 —. 0145 —. 056 —.120 —.181
—.184 —.158 —.093 —.030 0 0015 —. 0015 0 —. 008 —. 044 —.103 —.160
—. 158 —.133 —.073 —. 017 . 0035 —. 002 —. 006 —. 002 —.003 —. 0295 —. 082 —. 136
—.127 —.101 —.048 —. 0035 0025 —. 011 —-.07 -. 0085 0 —.015 —. 058 —.105
—. 062 —. 044 —. 008 003 —. 0225 —. 054 —. 063 —. 044 —. 0155 0 —. 016 —. 047
—.018 —. 0075 001 —.012 —. 081 —.123 —. 130 —.103 —. 059 —.016 0 —. 0085
—. 002 0 —.013 —. 009 .131 —.079 —. 188 —.164 —.108 —. 0475 —. 009 0

1 Upper surface at trailing edge.
2 Lower surface at trailing edge.

TABLE VI—DERIVED POTENTIALS AND VELOCITIES ON NACA 4412 AIRFOIL IN CASCADE; CONTOUR-INTEGRAL

METHOD
Values at points on figure 6 Values where 52 is known
®q Yy P, 3y Pa ®s Pr z 1 d%a cd;o Ya vs ur
2 cVo ceVo eWVy cVa Vo cVo cVo c cVo de ds Vo Ve Vo
® ® ®
0.0281 —0.0687 0.0021 —0.0144 0.0158 0. 5717 0. 5875 Upper surface
0259 —. 0571 . 0271 —. 0432 . 0098 . 5302 5400
0164 —. 0314 0382 —. 0720 —.0174 . 3280 3106
0033 —. 0098 0257 —. 1008 —. 0718 L1119 0401 0.0125 —. 0403 7.153 —0. 288 2.287 1. 999
—.0129 —. 0049 0090 —. 1296 —.1335 —. 0687 —. 2022 . 0500 —. 0496 4. 541 —.225 2.002 1.777
—.0184 —. 0071 0017 —. 1440 —. 1607 —.1237 —. 2844 . 1000 —. 0525 3. 500 —.184 1.853 1.869
—. 0219 —. 0114 —.0012 —. 1584 —. 1815 —. 1465 —. 3280 . 2000 —. 0667 2.733 —.182 1.719 1. 537
—.0210 —. 0130 —. 0031 —. 1728 —. 1969 —.1329 —.3298 . 4000 —. 0650 2.218 —.144 1.523 1.379
—. 0186 —. 0164 —. 0035 —. 1872 —. 2003 —.0818 —. 2011 . 6000 —. 0452 2.133 —. 096 1.3456 1. 249
—. 0157 —. 0151 —. 0015 —. 2017 —. 2189 0060 —. 2129 . 8000 —. 0189 2.498 —.047 1.178 1.131
—.0128 —.0128 —. 0043 —. 2161 —. 2332 1268 —. 1064 . 9000 —. 0042 3.226 —. 014 1.078 1.064
—. 0096 —.0118 - —. 2306 —. 2467 2747 0280
—. 0071 —. 0092 —.0122 —. 2449 —. 2642 . 4425 .1783 7
0002 —. 0187 -—. 0261 —. 2737 - . 7082 . 4986 Lower surface
0115 —. 0362 —. 0323 —. 3025 —.3233 1.1187 7954
0232 —. 0586 —. 0224 —.3313 —. 3306 1.3365 1
0281 ~-. 0687 06021 —. 3601 —. 3269 1.4117 1.0818 0.0125 —0.0598 8. 263 —0.494 0.458 —0.036
. 0500 —. 0792 4. 603 —.364 —. 314 —.678
. 1000 —.0938 3.304 —.310 —. 541 --. 851
. 2000 —.1078 2.413 —. 260 —. 676 —. 936
. 4000 —.1199 1.914 —. 230 —. 754 —. 084
. 6000 —.1073 1.903 —. 203 —. 706 —. 999
. 8000 —. 0564 2.335 —.132 —. 834 —. 966
. 9000 —.0333 3.080 —.103 —. 845 —. 948

1Velo;_:i';ies along the surface are considered positive when directed from the trailing edge to the leading edge on the lower surface, and from the leading edge to the trailing edge on the
upper surface.
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TABLE VII.—~COMPUTATION OF MAPPING FUNCTION CONSTANTS FOR NACA 4412 AIRFOIL LATTICE
On ] A®
K (deg) (deg) s T v Ry
—7.37 181. 62 1.1307 0.0157 0.2879 1.4343
—9.81 182,38 . 9585 L0152 . 2895 1. 2632
—7.85 181.83 1.0920 10156 ~2886 1.3962
—7.63 181.73 1.1088' 10157 Sag82 14127
—7.57 181,72 1.1147 10157 19882 1.4186
| | fNE | ow | & | o,
—T. . . . . T
1 4133( = )
o C0S Ao 1 {cosh KX—cos §;) (cosh K<-coS 6a)
®="975 '08¢ | (cosh E+cos 6:)(cosh K—cos Bn)
sin Ao _, [ (sin 8,—sin 6¢) sinh K
T=—"7 107" | “heR T sin 6, st 6¢
T _, [ (tan 6,—tan 6,) tanh K
U=5-cv, 807 | 53R tan 6, tan o

TABLE VIII,—RELATION BETWEEN CIRCLE ANGLE ¢ ({-PLANE) AND LOCATION ON NACA 4412 AIRFOIL IN CASCADE

Upper surface

Lower surface

; /] . ]
Point PricVy zfe (deg) Point Pr/cTy zfc (deg)
—0.2911 0. 006 1.4 0. 5875 1. 000 —178.3
—. 1064 . 090 17.0 . 5400 . 920 —167.3
1783 . 270 45.7 . 3106 . 707 —135.8
4986 501 98. 6 L0401 . 435 —82.9
7954 740 145.2 —. 2022 .187 —35.1
1. 0060 927 168. 2 —. 3280 . 033 —11.8
TABLE IX.—CONSTANTS OF NACA 4412 AIRFOIL LATTICE
Method AT, /e Vo AT,/cV AT /e Vy o K ¢ d%‘ ) deifdey @
Source-vortex method; first approximation ... ____ 0. 006 —0. 538 —0.32¢4 DO T UM SOOI RSO EPN DI
Source-vortex method; second approximation.___. . 006 ~.365 —.342 99 |||
Contour-integral method.__ | o —.346 .99 0.3083 181. 73 3.7 —5.75
Method of reference 8. . - oo I SRR SR U N 1,00 . 3109 181. 79 3.71 -5.94
TABLE X.—CONSTANTS OF DERIVED AIRFOIL LATTICE
- 9
Method ATL/eVy ATl,Je 1 AT,/eVy [} K (deg) dei/dag ) (deg)
Source-vortex method; first approximation _______._.______________ ~—0.083 —0. 101 —0.148 0.54 oo e
Contour-integral method __________.__..__ —.152 .54 0. 2637 193. 50 5.11 —2.03
Conformal transformation . e e e .54 . 2635 193. 46 5.11 —2.11
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Positive directions of axes and angles (forces and moments) are shown by arrdvﬁ

Axis - _ Moment about axis a Angle Velocities
- Force |- - - : —
gpara.!lt;l Linear
0 8Xx18, R ) . .
Designation |57 | symbol | Designation |Sym-| Fositive | Designa- | Sym-) (compo™ | Angular
o St " axis) o
Longitudinal......__. X | x Rolling.._. | L | Y—Z | Roll.__ é % P
Lateral Y Y Pitehing......| M Z—X Pitch..___._. [} v q
Normal ... Z - Z Yawing._..__. | N X—Y Yaw.A---__y_-‘ v | w r -
Absolute coefficients of moment : Angle of set of control surface (relative to neutral

Ci— L C.— M o= position), 5. (Indicate surface by proper subscript.)
TGS - TS =8 E ] o
- (rolling)  (pitchmg)  (yawing)

4. PROPELLER SYMBOLS

Diameter o ' -, v Y _ P
? Geometric pitch P Power, g.bsolute coefﬁmenﬁ 013—;;;‘,‘—5,
p/D  Pitch ratio

vV’  Inflow velocity

; ' N 1 4
C, -Speed-power coefficient= \/ P
V. Slipstream velocity ' v

T 7 - Efficiency.
T Thrust, absolute coefficient 0T=MTD4 n ' Revolutions per second, rps -
. ' Effective helix an; le=tan;1( )
Q Torque, absolute coeflicient 0°=p—n?ﬁ5 ng A21rrn

. 5. NUMERICAL RELATIONS
1 hp=76.04 kg-m/s=>550 ft-Ib/sec 1 1b=0.4536 kg

1 metric horsepower=0.9863 hp 1 kg=2.2046 Ib
1 mph=0.4470 mps 1 mi=1,609.35 m=>5,280 ft : g
1 mps=2.2369 mph ' ' C1m=32808ft Lo e e




